Lesson 7 - Multiplication \& Division - Even \& Odd Numbers - Spot the Mistake

NC Objective:
Recall and use multiplication and division facts for the 2,5 and 10 times tables, including recognising odd and even numbers

Resources needed:
Differentiated Sheets
Teaching Slides
Concrete resources

Vocabulary:
Odd, even, sets

Building on from Year 1, children should be able to recognise odd and even numbers.

They will use concrete manipulatives to explore odd and even numbers and the structure of these. Children now build on knowledge of even and odd number and apply what they have learnt and spot the mistake.

Key Questions:

Can you sort these objects (number pieces, ten frames, cubes, pictures etc) into an odd set and an even set? What makes these odd/even?
How do you find out if \qquad is an odd or even number?
Can you find all the odd and even numbers on a 100 square? What do you notice?

W Working Towards	Working Within	Kreater Depth
On this sheet, children focus on numbers between 1-10 and mainly the visual images for children to easily spot the odd and even numbers. They have four numbers in each column.	On this sheet, children look at numbers up to 100 and have a mix of visual images and numerals and words. They have 6 images in each column.	Children on this sheet have a secure knowledge of odd and even numbers. Children are required to carefully look at each box filled with pictorial values, numerals and words and calculate the total number represented and then determine whether they belong to corresponding odd or even table or not.
Reasoning \& Problem Solving		

Identify the mistakes in the table below and circle them.

Even	Odd
10	3

Identify the mistakes in the table below and circle them.

Identify the mistakes in the table below and circle them.

Identify the mistakes in the table below and circle them.

Each box represents a number. Find the total and circle any mistakes.

Odd	
$\bullet \cdot \because \because \because:$	seventy-nine add 14
	13
11	
	one hundred subtract nine

Each box represents a number. Find the total and circle any mistakes.

Even	
9 14	
(-9.8)	thirty-eight add twenty-four 62

Odd	
14 か $\boldsymbol{A}_{\hat{\imath}}$ 41	
27	seventy-nine add 14 95
	one hundred subtract nine 91

True or False?

10 is an odd number.
Prove your answer using concrete, pictorial and abstract representations.

Explain each approach.

Esin says,
I have added two one-digit numbers.
My answer divides into
2 equal groups.

What could Esin's numbers be?

Esin says,
I have added two one-digit numbers.
My answer divides into 2 equal groups.

10 is an odd number.
Prove your answer using concrete, pictorial and abstract representations.

Explain each approach.
What could Esin's numbers be?

1

6

True or False?

10 is an odd number.
Prove your answer using concrete, pictorial and abstract representations.

Explain each approach.

Children can use concrete or pictorial methods to show 10 is divisible by 2 and therefore it's false.

Esin says,
I have added two one-digit numbers. My answer divides into 2 equal groups.

What could Esin's numbers be?

Any two even one-digit numbers or any two odd one-digit numbers will give an even total.

10 is an odd number.

Prove your answer using concrete, pictorial and abstract representations.

Explain each approach.

Children can use concrete or pictorial methods to show 10 is divisible by 2 and therefore it's false.

Esin says,
I have added two one-digit numbers. My answer divides into 2 equal groups.

What could Esin's numbers be?

Any two even one-digit numbers or any two odd one-digit numbers will give an even total.

True or False?

12 is an odd number.
Prove your answer using concrete, pictorial and abstract representations.

Explain each approach.

Esin says,

I have added two one-digit numbers.
My answer divides into 2 equal groups.

What could Esin's numbers be?
Is this the only possible answer?

Esin says,

12 is an odd number.
Prove your answer using concrete, pictorial and abstract representations.

Explain each approach.

I have added two one-digit numbers.
My answer divides into 2 equal groups.

What could Esin's numbers be?
Is this the only possible answer?

True or False?

12 is an odd number.
Prove your answer using concrete, pictorial and abstract representations.

Explain each approach.

Children can use concrete or pictorial methods to show 12 is divisible by 2 and therefore it's false.

Esin says,

I have added two one-digit numbers.
My answer divides into 2 equal groups.

What could Esin's numbers be?
Is this the only possible answer?

Any two even one-digit numbers or any two odd one-digit numbers will give an even total.
E.g. $1+3=4,2+4=6$.

12 is an odd number.
Prove your answer using concrete, pictorial and abstract representations.

Explain each approach.

Children can use concrete or pictorial methods to show 12 is divisible by 2 and therefore it's false.

Esin says,

I have added two one-digit numbers. My answer divides into 2 equal groups.

What could Esin's numbers be?
Is this the only possible answer?

Any two even one-digit numbers or any two odd one-digit numbers will give an even total.

$$
\text { E.g. } 1+3=4,2+4=6 \text {. }
$$

True or False?

Five less than twenty is an odd number.

Prove your answer using concrete, pictorial and abstract representations.

Explain each approach.

Esin says,

I have added two one-digit numbers.
My answer divides into 2 equal groups.

What could Esin's numbers be?
Is this the only possible answer?
Which numbers would not be possible?
Explain your answers.

Esin says,

I have added two one-digit numbers.
My answer divides into 2 equal groups.

Five less than twenty is an odd number.
Prove your answer using concrete, pictorial and abstract representations.

Explain each approach.

What could Esin's numbers be?
Is this the only possible answer?
Which numbers would not be possible?
Explain your answers.

True or False?

Five less than twenty is an odd number.
Prove your answer using concrete, pictorial and abstract representations.

Explain each approach.

Children can use concrete or pictorial methods to show 15 is not divisible by 2 and therefore it's true.

I have added two one-digit numbers. My answer divides into 2 equal groups.
Esin says,

What could Esin's numbers be?

Is this the only possible answer?
Which numbers would not be possible?
Explain your answers.
Any two even one-digit numbers or any two odd onedigit numbers will give an even total.
E.g. $1+3=4,2+4=6$.

However, an odd number added to an even number will give an odd total so Esin could not have this combination.

Five less than twenty is an odd number.
Prove your answer using concrete, pictorial and abstract representations.

Explain each approach.

Children can use concrete or pictorial methods to show 15 is not divisible by 2 and therefore it's true.

I have added two one-digit numbers. My answer divides into 2 equal groups.

Esin says,

What could Esin's numbers be?
Is this the only possible answer?
Which numbers would not be possible?
Explain your answers.
Any two even one-digit numbers or any two odd onedigit numbers will give an even total.
E.g. $1+3=4,2+4=6$.

However, an odd number added to an even number will give an odd total so Esin could not have this combination.

