Subtraction

Partitioning sets: and learning number facts e.g. pairs that make 8, 9, 10 etc

Seeing 12 as made up of 5 and 7

Counting back/take away/reduction:

Practical subtraction: 72 - 47 = exchanging where necessary

This is now "Sixty-tween the control of the contro

Vertical subtraction:

5	⁷ &	¹ 2	³ ¼ 、	¹ 2	$X^{_{6}}$	¹ 3
3	4	7	1	6	4	5
2	3	5	2	6	2	8

Finding the difference (counting on):

Use of language such as 'How many more?' and 'How much taller?

The difference between 3 and 8

Vertical subtraction: Practically alongside recording.

Place value counters can also

be used.

Vertical subtraction: in the context of

£	3 -	³¥į	12
£	2	· 2	9
£	1 -	· 1	3

000	999	00 000 000
0	0	000

Vertical subtraction:

8	'2	Z°	'7	5
3	6	4	8	3
4	6	2	9	2

βğ	12	$Z^{^{6}}$	15	3	.³¥ੑ	2	8
	6	4	8	2	• 2	9	3
8	6	2	7	1	• 1	3	5